ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Incorporating copper wire mesh into a PCM-based battery pack

Ganji, Mohammad J., Agelin-Chaab, Martin et Rosen, Marc A.. 2025. « Incorporating copper wire mesh into a PCM-based battery pack ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 310 - Incorporating copper wire mesh int.pdf]
Prévisualisation
PDF
310 - Incorporating copper wire mesh int.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (11MB) | Prévisualisation

Résumé

Effective thermal management is essential for maintaining the performance and lifespan of lithium-ion batteries. This study introduces an innovative approach by incorporating a partial copper wire mesh within a PCM-based battery pack to enhance heat dissipation. Nine series-connected 21700 lithium-ion cells (5000 mAh) were subjected to constant discharge rates of 1C to 3C (5A to 15A) at an ambient temperature of 22 °C. A thermodynamic energy balance framework was employed to quantify heat generation, dissipation, and latent heat utilization. Experimental results indicate that integrating the copper mesh significantly improved heat dissipation, lowered peak cell temperatures, and reduced dependence on the PCM’s latent heat capacity. Compared to the conventional PCM-only system, the mesh-PCM configuration decreased maximum temperatures by 3.7, 2.6, and 4.8 °C at 1C, 2C, and 3C discharge rates, respectively, while increasing heat dissipation by 20-40%. At moderate discharge rates (1C and 2C), the mesh-PCM system effectively managed heat without requiring latent heat utilization, while at 3C, the PCM melting fraction was reduced from 15.3% to 9.9%. This demonstrates the stable thermal conditions and extends safe operational limits up to 3C (15A). These findings highlight the potential of copper mesh integration to enhance the efficiency of PCM-based BTMS, offering a lightweight and effective alternative to conventional cooling methods. Future work should focus on optimizing mesh design parameters to further improve thermal regulation and sustain reliability under higher discharge rates.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:11
Dernière modification: 18 déc. 2025 15:11
URI: https://espace2.etsmtl.ca/id/eprint/32400

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt