ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Supercritical CO2 heat transfer enhancement in large diameter horizontal tubes by internal fins

Hosseinnia, Seyed Mojtaba, Metsue, Antoine, Amiri, Leyla et Poncet, Sébastien. 2025. « Supercritical CO2 heat transfer enhancement in large diameter horizontal tubes by internal fins ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 212 - Supercritical CO2 heat transfer en.pdf]
Prévisualisation
PDF
212 - Supercritical CO2 heat transfer en.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (7MB) | Prévisualisation

Résumé

CO2 is a natural refrigerant with low global warmingpotential, widely employed in refrigeration, heat pumps, and powergeneration cycles. The thermophysical properties of supercritical CO2(s-CO2) near the pseudo-critical point exhibit significant variationwith temperature. In horizontally heated tubes, buoyancy force withinthe gravitational field causes the hotter, gas-like s-CO2 to accumulatenear the top, while the cooler, liquid-like s-CO2 remains concentratedin the center and lower regions. This non-uniform temperaturedistribution reduces heat transfer coefficients along both the axialand circumferential directions, particularly at the top of the tube.To mitigate this issue, this study investigates the incorporation ofeight thin internal fins within a horizontally oriented, large-diametersteel tube to enhance heat transfer performance in a high buoyancyforce (i.e., Richardson number > 0.1). A numerical investigationis performed for a 3D horizontal tube with an inner diameter of22.14 mm, subjected to a high heat flux boundary condition. Thenumerical results are validated against experimental data for a smoothhorizontal tube, demonstrating good agreement with a maximumtemperature error of less than 5%. The fins facilitate heat transfertowards the cooler regions of the s-CO2, significantly modify flowcirculation, and promote mixing, thereby improving heat transferefficiency. The results reveal that the internally finned tube achievesthe same heat transfer rate using 5.7% less tube solid mass andreduces the maximum temperature at the end of the heated section by50.8%. These findings underscore the potential of internally finnedhorizontal tubes to enable more cost-effective and efficient heatexchanger designs.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:11
Dernière modification: 18 déc. 2025 15:11
URI: https://espace2.etsmtl.ca/id/eprint/32416

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt