ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Magnetic field influence on the mechanical properties of 3D-printed magnetorheological composites

Hurtado, Arleth Suárez, Cordova, Angel Mora et Czekanski, Aleksander. 2025. « Magnetic field influence on the mechanical properties of 3D-printed magnetorheological composites ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 602 - Magnetic field influence on the me.pdf]
Prévisualisation
PDF
602 - Magnetic field influence on the me.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (531kB) | Prévisualisation

Résumé

Magnetorheological (MR) materials, such as ferromagnetic particle-reinforced composites, exhibit tunable mechanical properties under magnetic fields, which are crucial for innovative applications in automotive, aerospace, and medical devices. However, accurately modeling their behavior remains challenging due to the intricate interactions between the magnetic particles and the matrix. This research explores how applying a magnetic field during additive manufacturing, also known as 3D printing, can affect the alignment and distribution of magnetic particles, influencing the material's mechanical properties. Preliminary results show that magnetic fields significantly alter mechanical properties, including toughness and Young’s modulus, suggesting the potential for real-time control during fabrication. Iron-reinforced polylactic acid (PLA) filament is magnetized during the fused filament fabrication (FFF). ASTM D638 Type IV specimens are printed under three conditions: without a magnetic field, above a single samarium cobalt magnet, and between two samarium cobalt magnets. All samples were printed using 0- and 90-degree raster for anisotropic behavior evaluation. The effects of these different orientations on the material’s mechanical properties and microstructure are examined using tensile testing and optical microscopy. The findings provide valuable insights into the influence of magnetic field direction and field strength on MR materials, which contribute to developing these materials for enhanced and tunable structural integrity.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:12
Dernière modification: 18 déc. 2025 15:12
URI: https://espace2.etsmtl.ca/id/eprint/32423

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt