ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Frame field prediction for quadrilateral domain partition

Rentschler, Tobias, Tismer, Alexander et Riedelbauch, Stefan. 2025. « Frame field prediction for quadrilateral domain partition ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 363 - Frame field prediction for quadril.pdf]
Prévisualisation
PDF
363 - Frame field prediction for quadril.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (5MB) | Prévisualisation

Résumé

The generation of high-quality quadrilateral meshes is an essential requirement for a variety of applications, including Computational Fluid Dynamics (CFD). Conventional approaches generally compromise between speed and quality, with the computational demands increasing in response to higher quality requirements. Cross-field-based mesh generation has the potential to produce high-quality block-structured meshes. However, this approach relies on the solution of Partial Differential Equations (PDEs), which can be computationally intensive, particularly for large or high-resolution domains. This study presents a Graph Neural Network (GNN) capable of learning and approximating these PDEs, allowing the efficient partitioning of geometric domains into quadrilateral subregions. The primary benefit of this method is its capacity to partition geometric domains into quadrilateral subregions with good scalability, while eliminating the need to solve expensive PDEs. The GNN predicts a boundary-aligned frame field that serves as the foundation for the domain partitioning. Boundary conditions are defined based on normal and tangent vectors at the domain boundaries. They are propagated smoothly across the interior using the GNN, eliminating the need for computationally expensive PDEs. In a subsequent post-processing step, singularities within the frame field are identified, and streamlines originating from these singularities are computed. These streamlines are strategically aligned with the geometry of the domain, leading to the decomposition of the domain into quadrilateral regions. The resulting regions are well-suited for fast algebraic meshing techniques, such as bilinear transfinite interpolation, ensuring the generation of high-quality meshes. This study utilizes a simple 2- dimensional NACA profile as a test case to train the GNN.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:21
Dernière modification: 18 déc. 2025 15:21
URI: https://espace2.etsmtl.ca/id/eprint/32487

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt