ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

AI-enabled machine vision model for manual process monitoring and cycle time measurement

Sanchez, Daniela, Butt, Sajid et Qureshi, Ahmed. 2025. « AI-enabled machine vision model for manual process monitoring and cycle time measurement ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 258 - AI-enabled machine vision model fo.pdf]
Prévisualisation
PDF
258 - AI-enabled machine vision model fo.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (361kB) | Prévisualisation

Résumé

In high-variety, high-volume production, optimizing manual assembly is essential to sustain productivity, ensure flexibility, and minimize inefficiency. Unlike automated systems, manual assembly relies on human operators performing complex, repetitive tasks, which are prone to variations in execution time, skill level, and consistency. Traditional cycle time tracking methods, often manual and error-prone, lack precision and granularity. This research explores AI-powered machine vision to automate action recognition and cycle time measurement, offering a scalable, data-driven solution for real time process optimization. By leveraging advanced video analytics, the system identifies and classifies operator actions, recognizes key process steps, measures cycle times accurately, and detects inefficiencies. These insights enable precise time studies, helping manufacturers pinpoint bottlenecks, streamline workflows, and enhance efficiency. Unlike traditional sensor-based methods, AI-powered machine vision provides non-intrusive, adaptable tracking, making it ideal for dynamic production environments. Integrating machine vision aligns with digital manufacturing principles, using data-driven approaches for continuous improvement and quality control. The system delivers real-time insights and predictive analytics, enabling proactive adjustments to production planning and resource allocation. This approach strengthens flexible manufacturing, allowing rapid adaptation to product variability and shifting demands. Ultimately, the solution equips manufacturers to manage volume and diversity fluctuations without compromising quality or throughput, enhancing productivity and competitiveness.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:32
Dernière modification: 18 déc. 2025 15:32
URI: https://espace2.etsmtl.ca/id/eprint/32494

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt