ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

CFD analysis of magnetorheological fluid clutch

Sarvarmaleki, Sorayya Ghaffari, Rancourt, David et Poncet, Sebastien. 2025. « CFD analysis of magnetorheological fluid clutch ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 372 - CFD analysis of magnetorheological.pdf]
Prévisualisation
PDF
372 - CFD analysis of magnetorheological.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (3MB) | Prévisualisation

Résumé

Magnetorheological (MR) fluid is a type of smart fluid, in which magnetic particles are suspended in a non-magnetic carrier liquid, such as silicone oil. MR fluid is versatile, and caused a significant advancement in actuator technology. When subjected to an external magnetic field, MR fluids exhibit significant and reversible changes in their rheological properties, offering superior control compared to traditional hydraulic actuators while being lighter and more cost-effective. The MR fluid (MRF) clutch is one of the most essential types of actuators for torque transmission in rotating systems. Its reliability stems from the absence of mechanical contacts, which minimizes wear and enhances durability. Most research on MRF clutches has focused on their physical principles and optimization, and often using experimental setups. However, detailed investigations into MR fluid behavior within complex clutch geometries, particularly at high particle volume fractions, remain limited. This study uses a finite-volume based solver and solves the conservative equations for a single-phase highly concentrated MR fluid, to simplify the modeling. The numerical model shows first an excellent agreement with experiments in terms of torque. The influence of the magnetic flux density on the MRF’s dynamic viscosity and velocity profiles is then quantified up to 0.5 T. The magnetic field drastically affects both the fluid flow and properties by inducing large spatial variations in the small rotor-stator gaps.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:32
Dernière modification: 18 déc. 2025 15:32
URI: https://espace2.etsmtl.ca/id/eprint/32496

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt