Toure, Hamadoun, Ba, Kadiata et Karganroudi, Sasan Sattarpanah.
2025.
« Topology optimization of 3D civil structures for buckling resistance: Case of an aluminum footbridge. ».
In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025)
Coll. « Progress in Canadian Mechanical Engineering », vol. 8.
Prévisualisation |
PDF
376 - Topology optimization of 3D civil .pdf - Version publiée Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (1MB) | Prévisualisation |
Résumé
Topological and geometric optimization is now well developed, yet it remains underutilized in the field of civil structures. Selecting an optimized design that provides reduced weight and high strength while avoiding failures due to high dynamic loads, buckling constraints, or lateral-torsional instability risks is crucial for engineers. Topological and geometric optimization techniques enhance structural performance while reducing weight and design costs.This article presents an efficient topology optimization method incorporating key performance criteria for civil structures, including buckling, warping, and dynamic behavior. This method is specifically tailored for designing aluminum footbridges, where traditional design methods are still widely used. The proposed approach optimizes the topology of a 3D structure by minimizing its weight and compliance while ensuring compliance with buckling criteria.Kreisselmeier-Steinhauser aggregation function is used to combine multiple objectives or constraints into a single objective function, which has shown promising results in prior optimization studies [1]. In this work, only linear problems are considered. To address the buckling problem, an eigenvalue problem-solving approach is used to address the buckling problem. The stiffness matrix is assembled using the Cholesky factorization method and incorporates the SIMP (Solid Isotropic Material with Penalization) approach to interpolate density variations within the structure. The results of the static analysis of the optimized longitudinal beams demonstrate a good resistance of 2.65Pa under a flexion charge of 1.5kN/m2 with a yield strength of 2.7 Pa and buckling analysis gives a buckling factor of 51.
| Type de document: | Compte rendu de conférence |
|---|---|
| Éditeurs: | Éditeurs ORCID Hof, Lucas A. NON SPÉCIFIÉ Di Labbio, Giuseppe NON SPÉCIFIÉ Tahan, Antoine NON SPÉCIFIÉ Sanjosé, Marlène NON SPÉCIFIÉ Lalonde, Sébastien NON SPÉCIFIÉ Demarquette, Nicole R. NON SPÉCIFIÉ |
| Date de dépôt: | 18 déc. 2025 15:33 |
| Dernière modification: | 18 déc. 2025 15:33 |
| URI: | https://espace2.etsmtl.ca/id/eprint/32514 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |

