ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Topology optimization of 3D civil structures for buckling resistance: Case of an aluminum footbridge.

Toure, Hamadoun, Ba, Kadiata et Karganroudi, Sasan Sattarpanah. 2025. « Topology optimization of 3D civil structures for buckling resistance: Case of an aluminum footbridge. ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 376 - Topology optimization of 3D civil .pdf]
Prévisualisation
PDF
376 - Topology optimization of 3D civil .pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

Topological and geometric optimization is now well developed, yet it remains underutilized in the field of civil structures. Selecting an optimized design that provides reduced weight and high strength while avoiding failures due to high dynamic loads, buckling constraints, or lateral-torsional instability risks is crucial for engineers. Topological and geometric optimization techniques enhance structural performance while reducing weight and design costs.This article presents an efficient topology optimization method incorporating key performance criteria for civil structures, including buckling, warping, and dynamic behavior. This method is specifically tailored for designing aluminum footbridges, where traditional design methods are still widely used. The proposed approach optimizes the topology of a 3D structure by minimizing its weight and compliance while ensuring compliance with buckling criteria.Kreisselmeier-Steinhauser aggregation function is used to combine multiple objectives or constraints into a single objective function, which has shown promising results in prior optimization studies [1]. In this work, only linear problems are considered. To address the buckling problem, an eigenvalue problem-solving approach is used to address the buckling problem. The stiffness matrix is assembled using the Cholesky factorization method and incorporates the SIMP (Solid Isotropic Material with Penalization) approach to interpolate density variations within the structure. The results of the static analysis of the optimized longitudinal beams demonstrate a good resistance of 2.65Pa under a flexion charge of 1.5kN/m2 with a yield strength of 2.7 Pa and buckling analysis gives a buckling factor of 51.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:33
Dernière modification: 18 déc. 2025 15:33
URI: https://espace2.etsmtl.ca/id/eprint/32514

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt