ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Assessing lateral stability of long combination vehicles using stochastic modeling of varying operating conditions and parameter uncertainties

Yu, Jiangtao et He, Yuping. 2025. « Assessing lateral stability of long combination vehicles using stochastic modeling of varying operating conditions and parameter uncertainties ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 343 - Assessing lateral stability of lon.pdf]
Prévisualisation
PDF
343 - Assessing lateral stability of lon.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (780kB) | Prévisualisation

Résumé

Long combination vehicles (LCVs) have been increasingly applied for highway freight transportation due to their improved fuel economy and reduced greenhouse emissions. However, LCVs exhibit poor high-speed lateral stability owing to their multi-unit structures, large sizes, and high center of gravity (CG). Given the unique dynamic features of these large vehicles and varied operating conditions, LCVs’ lateral stability is difficult to predict. To date, simulation has been widely used to evaluate the dynamic performance of road vehicles. High fidelity simulations may provide excellent insights into the dynamics features of LCVs under a predefined operating condition. However, under varying operating conditions and in the presence of vehicle parameter uncertainties, it is difficult to use simulation for reasonably evaluating the lateral stability of LCVs. To address this problem, we propose an effective simulation method, which consider different road conditions and trailer payload variations using Monte Carlo based stochastic modeling method. The numerical simulations are executed on a co-simulation platform, consisting of TruckSim for LCV modelling, MatLab/SimuLink for updating vehicle model and operating condition, and Python for data management and analysis. Simulation results demonstrate the effectiveness of the proposed stochastic modeling method.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:34
Dernière modification: 18 déc. 2025 15:34
URI: https://espace2.etsmtl.ca/id/eprint/32527

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt