ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Room-temperature laser crystallization of oxygen vacancy-engineered zirconia for additive manufacturing

Benavides-Guerrero, Jaime A., Gerlein, Luis F., Angel-Ospina, Astrid C., Fourmont, Paul, Bhattacharya, Abhiroop, Zirakjou, Abbas, Vaussenat, Fabrice, Ross, Caroline A. et Cloutier, Sylvain G.. 2025. « Room-temperature laser crystallization of oxygen vacancy-engineered zirconia for additive manufacturing ». Additive Manufacturing, vol. 111.

[thumbnail of Cloutier-S-2025-32556.pdf]
Prévisualisation
PDF
Cloutier-S-2025-32556.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (12MB) | Prévisualisation

Résumé

We demonstrate how strategically engineered oxygen vacancies enable room-temperature laser crystallization of zirconia (ZrO₂) in ambient air. Our sol-gel chelation synthesis creates amorphous ZrO₂ nanoparticles with a high concentration of oxygen vacancies that fundamentally alter the material’s energy landscape. These defects create sub-bandgap states that facilitate visible light absorption and dramatically reduce the energy barrier for crystallization. Under low-energy laser irradiation (405–532 nm), oxygen vacancies mediate a rapid phase transformation mechanism where atmospheric oxygen interacts with vacancy sites, triggering ionic rearrangement and crystallization without conventional high-temperature processing. For comparison purposes, this study also explores the thermal crystallization of black zirconia in an oxidative atmosphere, a process typically performed under vacuum or inert conditions. Through comprehensive characterization (FTIR, EPR, XPS, XRD, Raman), we establish that vacancy-mediated crystallization produces monoclinic ZrO₂ with preserved defect structures, yielding a distinctive black phase with 25.6 % oxygen vacancy concentration, significantly higher than thermally processed counterparts (9.2 %). This vacancy-enabled crystallization circumvents the need for extreme temperatures (>1170◦C) typically required for ZrO₂ processing, making it compatible with additive manufacturing. Using a modified 3D printer with a 405 nm laser, we demonstrate patterned crystallization of complex architectures, opening new possibilities for fabricating advanced ZrO₂-based devices for photocatalysis, fuel cells, and energy applications. This work provides fundamental insights into defect-mediated phase transformations and establishes a new paradigm for room-temperature ceramic processing.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Cloutier, Sylvain G.
Affiliation: Génie électrique
Date de dépôt: 16 oct. 2025 14:18
Dernière modification: 13 nov. 2025 20:43
URI: https://espace2.etsmtl.ca/id/eprint/32556

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt