Benavides-Guerrero, Jaime A., Gerlein, Luis F., Angel-Ospina, Astrid C., Fourmont, Paul, Bhattacharya, Abhiroop, Zirakjou, Abbas, Vaussenat, Fabrice, Ross, Caroline A. et Cloutier, Sylvain G..
2025.
« Room-temperature laser crystallization of oxygen vacancy-engineered zirconia for additive manufacturing ».
Additive Manufacturing, vol. 111.
Prévisualisation |
PDF
Cloutier-S-2025-32556.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC-ND. Télécharger (12MB) | Prévisualisation |
Résumé
We demonstrate how strategically engineered oxygen vacancies enable room-temperature laser crystallization of zirconia (ZrO₂) in ambient air. Our sol-gel chelation synthesis creates amorphous ZrO₂ nanoparticles with a high concentration of oxygen vacancies that fundamentally alter the material’s energy landscape. These defects create sub-bandgap states that facilitate visible light absorption and dramatically reduce the energy barrier for crystallization. Under low-energy laser irradiation (405–532 nm), oxygen vacancies mediate a rapid phase transformation mechanism where atmospheric oxygen interacts with vacancy sites, triggering ionic rearrangement and crystallization without conventional high-temperature processing. For comparison purposes, this study also explores the thermal crystallization of black zirconia in an oxidative atmosphere, a process typically performed under vacuum or inert conditions. Through comprehensive characterization (FTIR, EPR, XPS, XRD, Raman), we establish that vacancy-mediated crystallization produces monoclinic ZrO₂ with preserved defect structures, yielding a distinctive black phase with 25.6 % oxygen vacancy concentration, significantly higher than thermally processed counterparts (9.2 %). This vacancy-enabled crystallization circumvents the need for extreme temperatures (>1170◦C) typically required for ZrO₂ processing, making it compatible with additive manufacturing. Using a modified 3D printer with a 405 nm laser, we demonstrate patterned crystallization of complex architectures, opening new possibilities for fabricating advanced ZrO₂-based devices for photocatalysis, fuel cells, and energy applications. This work provides fundamental insights into defect-mediated phase transformations and establishes a new paradigm for room-temperature ceramic processing.
| Type de document: | Article publié dans une revue, révisé par les pairs |
|---|---|
| Professeur: | Professeur Cloutier, Sylvain G. |
| Affiliation: | Génie électrique |
| Date de dépôt: | 16 oct. 2025 14:18 |
| Dernière modification: | 13 nov. 2025 20:43 |
| URI: | https://espace2.etsmtl.ca/id/eprint/32556 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |

