Muñoz Rojas, Daniel, Montoya-Torres, Jairo R. et Ayala Valderrama, Diana M..
2025.
« A data-driven framework for agri-food supply chains: A case study on inventory optimization in Colombian potatoes management ».
Logistics, vol. 9, nº 4.
Prévisualisation |
PDF
Montoya-J-2025-33201.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (2MB) | Prévisualisation |
Résumé
Background: Mitigating the negative impacts of climate change and ensuring food security are critical challenges for sustainable development. Potato crops play a key role in global food security, and optimizing their supply chains can improve yields, reduce waste, and stabilize farmer incomes. This study focuses on the potato supply chain in Boyacá, Colombia, aiming to maximize profitability for smallholder farmers through a data-driven approach. Methods: We developed a hybrid framework combining the newsvendor model, Monte Carlo simulation, and machine learning to optimize inventory decisions under uncertain demand and price conditions. Historical data on potato demand and prices were analyzed to fit probability distributions, and simulation scenarios were run for three main potato varieties. Results: The results show that integrating these methods improves inventory decision-making, with the Criolla Colombia variety yielding positive profitability, while the Diacol Capiro and Pastusa Suprema varieties incur losses under current market conditions. The machine learning model enhances predictive accuracy and supports dynamic planning. Conclusions: The findings demonstrate the potential of advanced analytics to reduce waste, support sustainable practices, and inform agricultural policy. The proposed methodology offers a practical decision-support tool for stakeholders and can be adapted to other crops and regions facing similar operational challenges.
| Type de document: | Article publié dans une revue, révisé par les pairs |
|---|---|
| Professeur: | Professeur Montoya Torres, Jairo |
| Affiliation: | Génie des systèmes |
| Date de dépôt: | 08 janv. 2026 18:43 |
| Dernière modification: | 10 janv. 2026 19:33 |
| URI: | https://espace2.etsmtl.ca/id/eprint/33201 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |

