FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Electrospun nanofiber scaffolds and plasma polymerization: A promising combination towards complete, stable endothelial lining for vascular grafts

Savoji, Houman, Hadjizadeh, Afra, Maire, Marion, Ajji, Abdellah, Wertheimer, Michael R. and Lerouge, Sophie. 2014. « Electrospun nanofiber scaffolds and plasma polymerization: A promising combination towards complete, stable endothelial lining for vascular grafts ». Macromolecular Bioscience, vol. 14, nº 8. pp. 1084-1095.
Compte des citations dans Scopus : 45.

[thumbnail of Lerouge S 2014 7808 Electrospun nanofiber scaffolds and plasma.pdf]
Preview
PDF
Lerouge S 2014 7808 Electrospun nanofiber scaffolds and plasma.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (1MB) | Preview

Abstract

In the quest to reduce risk of thrombosis in vascular grafts, it is essential to provide a surface with morphological and mechanical properties close to those of the extracellular matrix beneath the luminal endothelium, and to favor the growth of a confluent, stable monolayer of endothelial cells. This is accomplished here by combining electrospun poly(ethylene terephthalate) (PET) mats with an amine‐rich thin plasma‐polymerized coating, designated “L‐PPE:N.” Its deposition does not modify the open, highly porous mats and leads only to small changes in mechanical properties. L‐PPE:N significantly improves the adhesion and growth of human umbilical vein endothelial cells (HUVEC) and their resistance to flow‐induced shear stress. These properties favor the formation of desired confluent HUVEC monolayers on the topmost surface, unlike conventional vascular grafts (ePTFE or woven PET), where cells migrate inside the material. This combination is therefore highly advantageous for the pre‐endothelialization of the luminal side of small‐diameter vascular prostheses.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Lerouge, Sophie
Affiliation: Génie mécanique
Date Deposited: 22 May 2014 13:34
Last Modified: 22 Oct 2018 13:58
URI: https://espace2.etsmtl.ca/id/eprint/7808

Actions (login required)

View Item View Item