Riekstin, Ana Carolina, Langevin, Antoine, Dandres, Thomas, Gagnon, Ghyslain et Cheriet, Mohamed.
2020.
« Time Series-Based GHG Emissions Prediction for Smart Homes ».
IEEE Transactions on Sustainable Computing, vol. 5, nº 1.
pp. 134-146.
Compte des citations dans Scopus : 25.
Prévisualisation |
PDF
Gagnon-G-2020-17837.pdf - Version acceptée Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (9MB) | Prévisualisation |
Résumé
Smart homes play a crucial role in reducing the residential sector electricity consumption and Greenhouse Gases (GHG) emissions. In this work, we present a time series approach to predict GHG emissions to be integrated into smart home management systems. More specifically, we used Long Short-Term Memory (LSTM), a variant of Recurrent Neural Networks. The prediction results get mean absolute percentage error (MAPE) close to 2 percent when the region under study has an energy matrix mostly based on fossil fuels, less intermittent. For regions in which more renewable sources are present, the MAPE is around 12 percent. However, in either case, LSTM can predict the hours well with smaller emissions among the next 24 hours. Such day-ahead information brings awareness to the users and allows the scheduling of appliances to work in the hours in which the emissions are minimal, reducing them without significantly affecting the consumers' behavior.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Gagnon, Ghyslain Cheriet, Mohamed |
Affiliation: | Génie électrique, Génie des systèmes |
Date de dépôt: | 21 janv. 2019 21:33 |
Dernière modification: | 14 févr. 2024 19:26 |
URI: | https://espace2.etsmtl.ca/id/eprint/17837 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |