ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Time Series-Based GHG Emissions Prediction for Smart Homes

Riekstin, Ana Carolina, Langevin, Antoine, Dandres, Thomas, Gagnon, Ghyslain et Cheriet, Mohamed. 2020. « Time Series-Based GHG Emissions Prediction for Smart Homes ». IEEE Transactions on Sustainable Computing, vol. 5, nº 1. pp. 134-146.
Compte des citations dans Scopus : 25.

[thumbnail of Gagnon-G-2020-17837.pdf]
Prévisualisation
PDF
Gagnon-G-2020-17837.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (9MB) | Prévisualisation

Résumé

Smart homes play a crucial role in reducing the residential sector electricity consumption and Greenhouse Gases (GHG) emissions. In this work, we present a time series approach to predict GHG emissions to be integrated into smart home management systems. More specifically, we used Long Short-Term Memory (LSTM), a variant of Recurrent Neural Networks. The prediction results get mean absolute percentage error (MAPE) close to 2 percent when the region under study has an energy matrix mostly based on fossil fuels, less intermittent. For regions in which more renewable sources are present, the MAPE is around 12 percent. However, in either case, LSTM can predict the hours well with smaller emissions among the next 24 hours. Such day-ahead information brings awareness to the users and allows the scheduling of appliances to work in the hours in which the emissions are minimal, reducing them without significantly affecting the consumers' behavior.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Gagnon, Ghyslain
Cheriet, Mohamed
Affiliation: Génie électrique, Génie des systèmes
Date de dépôt: 21 janv. 2019 21:33
Dernière modification: 14 févr. 2024 19:26
URI: https://espace2.etsmtl.ca/id/eprint/17837

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt