ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging

Abdolmanafi, Atefeh, Cheriet, Farida, Duong, Luc, Ibrahim, Ragui et Dahdah, Nagib. 2020. « An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging ». Journal of Biophotonics, vol. 13, nº 1.
Compte des citations dans Scopus : 20.

[thumbnail of Duong-L-2020-19589.pdf]
Prévisualisation
PDF
Duong-L-2020-19589.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (3MB) | Prévisualisation

Résumé

Intravascular optical coherence tomography (IV-OCT) is a light-based imaging modality with high resolution, which employs near-infrared light to provide tomographic intracoronary images. Morbidity caused by coronary heart disease is a substantial cause of acute coronary syndrome and sudden cardiac death. The most common intracoronay complications caused by coronary artery disease are intimal hyperplasia, calcification, fibrosis, neovascularization and macrophage accumulation, which require efficient prevention strategies. OCT can provide discriminative information of the intracoronary tissues, which can be used to train a robust fully automatic tissue characterization model based on deep learning. In this study, we aimed to design a diagnostic model of coronary artery lesions. Particularly, we trained a random forest using convolutional neural network features to distinguish between normal and diseased arterial wall structure. Then, based on the arterial wall structure, fully convolutional network is designed to extract the tissue layers in normal cases, and pathological tissues regardless of lesion type in pathological cases. Then, the type of the lesions can be characterized with high precision using our previous model. The results demonstrate the robustness of the model with the approximate overall accuracy up to 90%.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Duong, Luc
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 22 oct. 2019 19:29
Dernière modification: 24 mai 2022 14:50
URI: https://espace2.etsmtl.ca/id/eprint/19589

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt