ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Brain status modeling with non-negative projective dictionary learning

Zhang, Mingli, Desrosiers, Christian, Guo, Yuhong, Khundrakpam, Budhachandra, Al-Sharif, Noor, Kiar, Greg, Valdes-Sosa, Pedro, Poline, Jean-Baptiste et Evans, Alan. 2020. « Brain status modeling with non-negative projective dictionary learning ». NeuroImage, vol. 206.
Compte des citations dans Scopus : 8.

[thumbnail of Desrosiers C 2019 19811.pdf]
Prévisualisation
PDF
Desrosiers C 2019 19811.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (5MB) | Prévisualisation

Résumé

Accurate prediction of individuals’ brain age is critical to establish a baseline for normal brain development. This study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL) approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, projecting features into a low-dimensional manifold such that information is preserved only for the corresponding age group. The proposed framework improves upon previous discriminative dictionary learning methods by incorporating orthogonality and non-negativity constraints, which remove representation redundancy and perform implicit feature selection. We study brain development on multi-modal brain imaging data from the PING dataset (N = 841, age = 3-21 years). The proposed analysis uses our NDPL framework to predict the age of subjects based on cortical measures from T1-weighted MRI and connectome from diffusion weighted imaging (DWI). We also investigate the association between age prediction and cognition, and study the influence of gender on prediction accuracy. Experimental results demonstrate the usefulness of NDPL for modeling brain development.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Desrosiers, Christian
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 20 nov. 2019 21:04
Dernière modification: 14 déc. 2020 17:25
URI: https://espace2.etsmtl.ca/id/eprint/19811

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt