Azizmohammadi, Fariba, Martin, Rémi, Miro, Joaquim et Duong, Luc.
2019.
« Model-free cardiorespiratory motion prediction from X-ray angiography sequence with LSTM network ».
In 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (Berlin, Germany, July 23-27, 2019)
pp. 7014-7018.
Piscataway, NJ, USA : IEEE.
Compte des citations dans Scopus : 5.
Prévisualisation |
PDF
Duong-L-2019-19870.pdf - Version acceptée Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (868kB) | Prévisualisation |
Résumé
We present a novel model-free approach for cardiorespiratory motion prediction from X-ray angiography time series based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN). Cardiorespiratory motion prediction is defined as a problem of estimating the future displacement of the coronary vessels in the next image frame in an X-ray angiography sequence. The displacement of the vessels is represented as a sequence of 2D affine transformation matrices allowing 2D X-ray registrations in a sequence. The new displacement parameters from a sequence of transformation matrices are predicted using an LSTM model. LSTM is a particular form of Recurrent Neural Network (RNN) architecture suitable for learning sequential data and predicting time series. The method was developed and validated by simulated data using a realistic cardiorespiratory motion simulator (XCAT). The results show that this method converges quickly and can predict the complex motion in the angiography sequences with irregularities. The mean values of prediction error over all the patients are approximately 0.29 mm (2 pixels) difference for the combination of both motions, 0.51 mm (3.5 pixels) difference for cardiac motion and 0.44 mm (3 pixels) difference for respiratory motion.
Type de document: | Compte rendu de conférence |
---|---|
Professeur: | Professeur Duong, Luc |
Affiliation: | Génie logiciel et des technologies de l'information |
Date de dépôt: | 04 déc. 2019 20:33 |
Dernière modification: | 08 août 2024 14:31 |
URI: | https://espace2.etsmtl.ca/id/eprint/19870 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |