ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Crosstalk suppression in semi-intrusive load monitoring systems using hall effect sensors

Langevin, Antoine, Gagnon, Ghyslain et Cheriet, Mohamed. 2020. « Crosstalk suppression in semi-intrusive load monitoring systems using hall effect sensors ». IEEE Transactions on Smart Grid, vol. 11, nº 6. pp. 5019-5027.
Compte des citations dans Scopus : 5.

[thumbnail of Gagnon-G-2020-20944.pdf]
Prévisualisation
PDF
Gagnon-G-2020-20944.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (4MB) | Prévisualisation

Résumé

Semi-intrusive load monitoring (SILM) is an appliance load monitoring approach using multiple meters, each meter measuring power for a subgroup of appliances. As an effective solution for demand response programs, SILM is used to get granular power measurements at the level of individual appliances in buildings. Hall effect sensors (HES) on each wire attached to a circuit breaker in distribution panels are one means of providing SILM. However, HES are greatly affected by crosstalk noise generated by neighboring wires, up to 35% of interfering signals. To remove crosstalk noise, this work proposes a blind source separation (BSS) approach designed to deal with sparse matrices, making SILM measurements accurate for home energy management systems. Our approach leverages two key elements: (i) a BSS algorithm based on non-correlation for sparse mixing matrix; (ii) a sensor gain compensation that leverages smart meter readings. The results demonstrate that the total power estimation error is reduced from 15% to 2% on the Tracebase dataset, and from 55% to 9% on our HES dataset monitored in a family home. Furthermore, the proposed approach outperforms standard BSS algorithms such as FastICA and InfoMax. This work shows that HES can be used for load monitoring in smart buildings.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Gagnon, Ghyslain
Cheriet, Mohamed
Affiliation: Génie électrique, Génie des systèmes
Date de dépôt: 16 sept. 2020 19:58
Dernière modification: 05 déc. 2022 19:48
URI: https://espace2.etsmtl.ca/id/eprint/20944

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt