ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Prediction of the yield stress of printing mortar ink

Vasileios, Sergis, Charrier, Malo et Ouellet-Plamondon, Claudiane M.. 2020. « Prediction of the yield stress of printing mortar ink ». In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 (En ligne, July 06-09, 2020) Coll. « RILEM Bookseries », vol. 28. pp. 360-369. Cham : Springer International Publishing.
Compte des citations dans Scopus : 2.

[thumbnail of Ouellet-Plamondon-C-2020-20998.pdf]
Prévisualisation
PDF
Ouellet-Plamondon-C-2020-20998.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (472kB) | Prévisualisation

Résumé

The development of printable cement-based materials is a high priority in the field of 3D printing for construction. There are many admixtures available for the design of the printing mortar ink which can influence the wet and final properties of the mortar. In this work, artificial intelligence has been utilized to predict those properties and guide the dosage of each admixture. The algorithms were developed from a factorial experimental plan. The mortar investigated consists of cement blended with silica fume to reduce the embodied carbon of the mixture. The selected admixtures were a superplasticizer, a viscosity modifying agent, nano-clay, C-S-H seeds and an accelerator with a water-reducing effect. A rotary rheometer was used to measure the viscosity and the dynamic yield stress of both mortar and cement-paste mixtures. Additional tests were conducted such as the small Abrams cone and the ASTM C1437 flow test. Several predictive algorithms were developed and compared, in which artificial neural networks were used. Furthermore, to enhance the performance of the neural network, a genetic algorithm was used to optimize the network parameters. To evaluate the performance of the models, the normalized root mean square error (NRMSE), and coefficient of determination (R2) were calculated. This approach is a single-objective prediction which yields promising capability to predict the wet properties of both mortar and cement pastes, which can be later expanded into a multi-objective approach.

Type de document: Compte rendu de conférence
ISBN: 978-3-030-49916-7
Éditeurs:
Éditeurs
ORCID
Bos, Freek P.
NON SPÉCIFIÉ
Lucas, Sandra S.
NON SPÉCIFIÉ
Wolfs, Rob J. M.
NON SPÉCIFIÉ
Salet, Theo A. M.
NON SPÉCIFIÉ
Professeur:
Professeur
Ouellet-Plamondon, Claudiane
Affiliation: Génie de la construction
Date de dépôt: 28 sept. 2020 18:06
Dernière modification: 14 nov. 2022 19:48
URI: https://espace2.etsmtl.ca/id/eprint/20998

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt