ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Multivariate machine learning models for short-term forecast of lightpath performance

Allogba, Stéphanie, Aladin, Sandra et Tremblay, Christine. 2021. « Multivariate machine learning models for short-term forecast of lightpath performance ». Journal of Lightwave Technology, vol. 39, nº 22. pp. 7146-7158.
Compte des citations dans Scopus : 7.

[thumbnail of Tremblay-C-2021-23179-2.pdf]
Prévisualisation
PDF
Tremblay-C-2021-23179-2.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (2MB) | Prévisualisation

Résumé

Machine Learning (ML) is emerging as a promising solution for managing the physical of heterogeneous dynamic optical networks transporting applications in a software defined network (SDN) context, namely for performance prediction. We propose two multivariate neural network models based on Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) methods, trained with field performance data and features, for predicting lightpath signal-to-noise ratio (SNR) over forecast horizons of up to 4 days. The best performance is achieved by using a 5-feature LSTM multivariate model over forecast horizons of up to 96 hours, with an absolute maximum error (AME) of 0.90 dB, compared to 0.91 dB and 0.97 dB for the GRU and LSTM univariate models, respectively, and 1.21 dB for a persistence model. The 2-feature multivariate models obtained through feature engineering perform better than their univariate counterparts for forecast horizons of up to 40 hours. Lastly, we explore the concept of transfer learning (TL) by testing the trained multivariate LSTM and univariate GRU models on field data from two lightpaths carried on the same route. The TL models underperform the naive model for the lightpath carried in a different optical fiber. However, for the lightpath carried in the same optical fiber on a portion of the same route, the LSTM-based TL model outperforms the naive model with a difference of up to 0.11 dB at a 96-hour forecast horizon, compared to 0.30 dB for the lightpath in the source domain, while using 3 times less training data.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Tremblay, Christine
Affiliation: Génie électrique
Date de dépôt: 22 sept. 2021 20:25
Dernière modification: 08 déc. 2021 21:01
URI: https://espace2.etsmtl.ca/id/eprint/23179

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt