ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Deep-learning framework for fully-automated recognition of TiO2 polymorphs based on Raman spectroscopy

Bhattacharya, Abhiroop, Benavides, Jaime A., Gerlein, Luis Felipe et Cloutier, Sylvain G.. 2022. « Deep-learning framework for fully-automated recognition of TiO2 polymorphs based on Raman spectroscopy ». Scientific Reports, vol. 12, nº 1.
Compte des citations dans Scopus : 3.

[thumbnail of Cloutier-S-2022-26056.pdf]
Prévisualisation
PDF
Cloutier-S-2022-26056.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

Emerging machine learning techniques can be applied to Raman spectroscopy measurements for the identification of minerals. In this project, we describe a deep learning‑based solution for automatic identification of complex polymorph structures from their Raman signatures. We propose a new framework using Convolutional Neural Networks and Long Short‑Term Memory networks for compound identification. We train and evaluate our model using the publicly‑available RRUFF spectral database. For model validation purposes, we synthesized and identified different TiO 2 polymorphs to evaluate the performance and accuracy of the proposed framework. TiO 2 is a ubiquitous material playing a crucial role in many industrial applications. Its unique properties are currently used advantageously in several research and industrial fields including energy storage, surface modifications, optical elements, electrical insulation to microelectronic devices such as logic gates and memristors. The results show that our model correctly identifies pure Anatase and Rutile with a high degree of confidence. Moreover, it can also identify defect‑rich Anatase and modified Rutile based on their modified Raman Spectra. The model can also correctly identify the key component, Anatase, from the P25 Degussa TiO 2 . Based on the initial results, we firmly believe that implementing this model for automatically detecting complex polymorph structures will significantly increase the throughput, while dramatically reducing costs.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Cloutier, Sylvain G.
Affiliation: Génie électrique
Date de dépôt: 06 janv. 2023 19:37
Dernière modification: 09 janv. 2023 16:17
URI: https://espace2.etsmtl.ca/id/eprint/26056

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt