ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Resource allocation with edge-cloud collaborative traffic prediction in integrated radio and optical networks

Bao, Bowen, Yang, Hui, Yao, Qiuyan, Guan, Lin, Zhang, Jie et Cheriet, Mohamed. 2023. « Resource allocation with edge-cloud collaborative traffic prediction in integrated radio and optical networks ». IEEE Access, vol. 11. pp. 7067-7077.
Compte des citations dans Scopus : 11.

[thumbnail of Cheriet-M-2023-26242.pdf]
Prévisualisation
PDF
Cheriet-M-2023-26242.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

By integrating communications in different domains, integrated radio and optical networks can serve a wider range of applications and services. Integrated radio and optical network scenarios will involve more weak-computation-ability network nodes, such as small-cell base stations. To pursue efficient integrated radio and optical networks, more efficient ways to conduct transmission under the demand of edge and cloud collaboration are required. The lack of forward-looking resource allocation may easily lead to a waste of network resources without an expected return. Therefore, an efficient resource allocation scheme needs to consider certain issues: 1) a comprehensive perspective of traffic prediction; 2) a release of pressure on the transmission pipeline during the prediction process; and 3) a reduction of loss of edge nodes due to the computation. In this paper, benefiting from machine learning, we propose a resource allocation with edge- cloud collaborative traffic prediction (TP-ECC) in integrated radio and optical networks, where an efficient resource allocation scheme (ERAS) is designed based on the prediction results with the gated recurrent unit model. We maximize the utilization of limited resources to improve the awareness of network status. We present three evaluation indicators and build a network architecture to evaluate our resource allocation scheme. Through edge-cloud collaboration, our proposal can improve traffic prediction accuracy by 9.5% compared with single-point traffic prediction, and resource utilization is also improved by edge-cloud collaborative traffic prediction.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Cheriet, Mohamed
Affiliation: Génie des systèmes
Date de dépôt: 10 mars 2023 19:11
Dernière modification: 13 mars 2023 14:38
URI: https://espace2.etsmtl.ca/id/eprint/26242

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt