Karthik, Enamundram Naga, Cheriet, Farida et Laporte, Catherine.
2023.
« Uncertainty estimation in unsupervised MR-CT synthesis of scoliotic spines ».
IEEE Open Journal of Engineering in Medicine and Biology, vol. 5.
pp. 421-427.
Compte des citations dans Scopus : 2.
Prévisualisation |
PDF
Laporte-C-2023-26490-1.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (1MB) | Prévisualisation |
Résumé
Uncertainty estimations through approximate Bayesian inference provide interesting insights to deep neural networks’ behavior. In unsupervised learning tasks, where expert labels are unavailable, it becomes ever more important to critique the model through uncertainties. Methods: This paper presents a proof-of-concept for generalizing the aleatoric and epistemic un- certainties in unsupervised MR-CT synthesis of scoliotic spines. A novel adaptation of the cycle-consistency constraint in CycleGAN is proposed such that the model predicts the aleatoric uncertainty maps in addition to the standard volume-to-volume translation between Magnetic Resonance (MR) and Computed Tomography (CT) data. Results: Ablation experiments were performed to understand uncertainty estimation as an implicit regularizer and a measure of the model’s confidence. Conclusion: The aleatoric uncertainty helps in distinguishing between the bone and soft- tissue regions in CT and MR data during translation, while the epistemic uncertainty provides interpretable information to the user for downstream tasks.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Laporte, Catherine |
Affiliation: | Génie électrique |
Date de dépôt: | 30 mai 2023 20:56 |
Dernière modification: | 14 août 2024 15:41 |
URI: | https://espace2.etsmtl.ca/id/eprint/26490 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |