ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Kinetic modeling of the devolatilization of pulverized coal, poplar wood, and their blends in a thermogravimetric analyzer and a flat flame reactor

Lemaire, Romain, Wang, Wei et Menanteau, Sébastien. 2023. « Kinetic modeling of the devolatilization of pulverized coal, poplar wood, and their blends in a thermogravimetric analyzer and a flat flame reactor ». ACS Omega, vol. 8, nº 32. pp. 29455-29467.
Compte des citations dans Scopus : 3.

[thumbnail of Lemaire-R-2023-27518.pdf]
Prévisualisation
PDF
Lemaire-R-2023-27518.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (4MB) | Prévisualisation

Résumé

Devolatilization kinetics of coal, poplar wood, and blends containing 10 and 20 wt % of biomass were characterized. Measurements were carried out under inert atmosphere with heating rates between 10 K min−1 and ∼106 K s−1 using a thermogravimetric analyzer (TGA) and a flat flame reactor (FFR). Measured data were simulated using the chemical percolation devolatilization (CPD) model and a global kinetic scheme based on two competitive reactions integrating a refined differential reaction model. The CPD model failed to simulate TGA results but reproduced FFR data relatively well. As for the global model, selecting kinetic parameters from the literature turned out to lead to unsuitable predictions. Fitted values of the activation energies Ea,i, pre-exponential factors Ai, mass stoichiometric coefficients Yi, and the reaction model factor n were therefore inferred using a genetic algorithm-based optimization procedure, leading to obtain an excellent agreement between simulated and measured data. The assessed Ea,i values were found to be lower for wood than for coal, which is consistent with the higher energy required to break the strong C−C bonds holding the highly cross-linked aromatic structures of coal. Besides, blending coal with 20 wt % of wood induced a decrease of Ea,i values, which went from 99.79 to 86.1 kJ mol−1 and from 186.72 to 171.57 kJ mol−1 for the first and second reactions prevailing at low and high temperatures, respectively. Finally, the fact that the activation energy of the first devolatilization reaction was found to be lower with the blend containing 20% of wood than for wood illustrated the probable existence of synergies, as also exemplified by the characteristic devolatilization times for blended samples, which were found to be relatively similar to and even lower than that of wood.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Lemaire, Romain
Affiliation: Génie mécanique
Date de dépôt: 30 août 2023 19:40
Dernière modification: 16 oct. 2023 19:12
URI: https://espace2.etsmtl.ca/id/eprint/27518

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt