ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Publish/subscribe method for real-time data processing in massive IoT leveraging blockchain for secured storage

Ataei, Mohammadhossein, Eghmazi, Ali, Shakerian, Ali, Landry, René Jr. et Chevrette, Guy. 2023. « Publish/subscribe method for real-time data processing in massive IoT leveraging blockchain for secured storage ». Sensors, vol. 23, nº 24.
Compte des citations dans Scopus : 2.

[thumbnail of Landry-R-2023-28272.pdf]
Prévisualisation
PDF
Landry-R-2023-28272.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (5MB) | Prévisualisation

Résumé

In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real time. In order to manage Massive IoT data streams, we utilize analytical database software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated broker, effectively functioning as a separate server. This broker enables any application to subscribe to the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE Release 1.5 within our model. This strategic redundancy enhances data transmission availability, safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security, we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than 25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a secure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions, thereby demonstrating its high efficiency.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Landry, René Jr
Affiliation: Génie électrique
Date de dépôt: 12 janv. 2024 14:50
Dernière modification: 06 févr. 2024 19:36
URI: https://espace2.etsmtl.ca/id/eprint/28272

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt