ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Detection of floating objects on water surface using YOLOv5s in an Edge computing environment

Li, He, Yang, Shuaipeng, Zhang, Rui, Yu, Peng, Fu, Zhumu, Wang, Xiangyang, Kadoch, Michel et Yang, Yang. 2024. « Detection of floating objects on water surface using YOLOv5s in an Edge computing environment ». Water, vol. 16, nº 1.

[thumbnail of Kadoch-M-2024-28298.pdf]
Prévisualisation
PDF
Kadoch-M-2024-28298.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

Aiming to solve the problems with easy false detection of small targets in river floating object detection and deploying an overly large model, a new method is proposed based on improved YOLOv5s. A new data augmentation method for small objects is designed to enrich the dataset and improve the model’s robustness. Distinct feature extraction network levels incorporate different coordinate attention mechanism pooling methods to enhance the effective feature information extraction of small targets and improve small target detection accuracy. Then, a shallow feature map with 4-fold down-sampling is added, and feature fusion is performed using the Feature Pyramid Network. At the same time, bilinear interpolation replaces the up-sampling method to retain feature information and enhance the network’s ability to sense small targets. Network complex algorithms are optimized to better adapt to embedded platforms. Finally, the model is channel pruned to solve the problem of difficult deployment. The experimental results show that this method has a better feature extraction capability as well as a higher detection accuracy. Compared with the original YOLOv5 algorithm, the accuracy is improved by 15.7%, the error detection rate is reduced by 83% in small target task detection, the detection accuracy can reach 92.01% in edge testing, and the inference speed can reach 33 frames per second, which can meet the real-time requirements.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Kadoch, Michel
Affiliation: Génie électrique
Date de dépôt: 22 janv. 2024 17:06
Dernière modification: 06 févr. 2024 19:50
URI: https://espace2.etsmtl.ca/id/eprint/28298

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt