ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Deep learning method to detect missing welds for joist assembly line

Raoofi, Hamed, Sabahnia, Asa, Barbeau, Daniel et Motamedi, Ali. 2024. « Deep learning method to detect missing welds for joist assembly line ». Applied System Innovation, vol. 7, nº 1.
Compte des citations dans Scopus : 1.

[thumbnail of Motamedi-A-2024-28430.pdf]
Prévisualisation
PDF
Motamedi-A-2024-28430.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (8MB) | Prévisualisation

Résumé

Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods can now be automated, resulting in time and cost savings, as well as improvements in product quality. This research focuses on the application of computer vision approaches to monitor the quality of welding in prefabricated steel elements. A high-performance network was designed, consisting of a video capturing station, a customized classifier based on a YOLOv4 detector and an IoU tracker, and a user interface software for any interaction with quality control workers. The network demonstrated over 98% accuracy in identifying steel connection types and detecting missed welds on the assembly line in real-time. Extensive validation was conducted using a large dataset from a real production environment. The proposed framework aims to reduce rework, minimize hazards, and enhance product quality. This research contributes to the automation of quality control processes in the construction industry.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Motamedi, Ali
Affiliation: Génie de la construction
Date de dépôt: 12 mars 2024 19:00
Dernière modification: 15 mars 2024 18:37
URI: https://espace2.etsmtl.ca/id/eprint/28430

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt