Beaulac, Arnaud, Lalonde, Timothé, Haillot, Didier et Monfet, Danielle.
2024.
« Energy modeling, calibration, and validation of a small-scale greenhouse using TRNSYS ».
Applied Thermal Engineering, vol. 248, nº part A.
Compte des citations dans Scopus : 1.
Prévisualisation |
PDF
Haillot-D-2024-28607.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (4MB) | Prévisualisation |
Résumé
Greenhouse energy modeling is a prevalent tool for optimizing greenhouse energy consumption. However, for a model to serve its intended use, it is imperative to have a high level of confidence in the precision of its predictions. In this paper, a validated greenhouse energy model for a typical small-scale greenhouse in a cold climate is developed. The model is created using TRNSYS, a building performance simulation tool, with detailed energy modeling components and a user-defined crop model. The model is calibrated to fix uncertain parameters. A sensitivity analysis is used first to identify sensible uncertain parameters, followed by a multi-stage automated calibration. The automated calibration method uses a multi-objective genetic algorithm to adjust the uncertain parameters, calibrating the model for the measured indoor air temperature and relative humidity. The model performed well during the free-floating and ventilated stages (56 days) with a combined root mean square error (RMSE) of 1.6 ◦C for indoor air temperature and 8.3 % for the air relative humidity. The validation process involved assessing the applicability of the calibrated model using two additional datasets. For all the cases, comparing the simulation results with indoor environment measurements resulted in an RMSE of less than 2 ◦C for air temperature and less than 10 % for air relative humidity; these values compare favorably to the literature. The model achieved a 3.7 % mean relative error (MRE) in estimating monthly energy consumption for a minimally heated greenhouse. Given these results, the model is deemed sufficiently accurate and applicable for future investigations.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Haillot, Didier Monfet, Danielle |
Affiliation: | Génie mécanique, Génie de la construction |
Date de dépôt: | 29 avr. 2024 20:26 |
Dernière modification: | 13 mai 2024 15:00 |
URI: | https://espace2.etsmtl.ca/id/eprint/28607 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |