ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Intuitive physics-driven approach: Design and calibration of a flight controller for indoor blimps

Gordoniz, Jorge Esteban Salas, Saad, Maarouf et St-Onge, David. 2024. « Intuitive physics-driven approach: Design and calibration of a flight controller for indoor blimps ». In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (Washington, DC, USA, Aug. 25-28) ASME.
(Sous presse)

[thumbnail of StOnge-D-2024-28775.pdf]
Prévisualisation
PDF
StOnge-D-2024-28775.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (952kB) | Prévisualisation

Résumé

This research addresses the challenges of defining and tuning a flight controller for uncrewed aerial vehicles (UAVs), mainly, a lighter-than-air vehicle, like a blimp; a task often fraught with complexity for UAV designers. These challenges typically involve several iterations in both simulation and real-world settings that require the identification of the dynamic model. In this paper, we introduce a novel, but simple approach that harnesses intuitive physics principles to streamline the process of tuning and to ensure the safeness and robust path tracking for indoor blimps. Our method involves a threefold strategy: 1. A basic control rooted in Sliding Mode Control (SMC) with a saturation term that permits to achieve the motion in the three axes (X, Y and Z), while defining maximum cruising speeds and maximum desired control forces; used to complete the operation of path tracking and hovering. 2. A recursive simple moving average (SMA) term for the applied control forces is incorporated to the previous strategy to minimize steady-state error in real-time for altitude control, which can compensate for changes in the weight of the blimp. 3. A swing stabilizer mechanism designed to dampen oscillations around naturally occurred pitch and roll angles for enhanced stability. Experimental results validate the efficacy and simplicity of our approach, demonstrating robustness, rapid deployment and good path accuracy.

Type de document: Compte rendu de conférence
Professeur:
Professeur
Saad, Maarouf
St-Onge, David
Affiliation: Génie électrique, Génie mécanique
Date de dépôt: 11 juin 2024 18:35
Dernière modification: 29 août 2024 04:00
URI: https://espace2.etsmtl.ca/id/eprint/28775

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt