FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Intuitive physics-driven approach: Design and calibration of a flight controller for indoor blimps

Gordoniz, Jorge Esteban Salas, Saad, Maarouf and St-Onge, David. 2024. « Intuitive physics-driven approach: Design and calibration of a flight controller for indoor blimps ». In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (Washington, DC, USA, Aug. 25-28) ASME.
(In press)

[thumbnail of StOnge-D-2024-28775.pdf]
Preview
PDF
StOnge-D-2024-28775.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (952kB) | Preview

Abstract

This research addresses the challenges of defining and tuning a flight controller for uncrewed aerial vehicles (UAVs), mainly, a lighter-than-air vehicle, like a blimp; a task often fraught with complexity for UAV designers. These challenges typically involve several iterations in both simulation and real-world settings that require the identification of the dynamic model. In this paper, we introduce a novel, but simple approach that harnesses intuitive physics principles to streamline the process of tuning and to ensure the safeness and robust path tracking for indoor blimps. Our method involves a threefold strategy: 1. A basic control rooted in Sliding Mode Control (SMC) with a saturation term that permits to achieve the motion in the three axes (X, Y and Z), while defining maximum cruising speeds and maximum desired control forces; used to complete the operation of path tracking and hovering. 2. A recursive simple moving average (SMA) term for the applied control forces is incorporated to the previous strategy to minimize steady-state error in real-time for altitude control, which can compensate for changes in the weight of the blimp. 3. A swing stabilizer mechanism designed to dampen oscillations around naturally occurred pitch and roll angles for enhanced stability. Experimental results validate the efficacy and simplicity of our approach, demonstrating robustness, rapid deployment and good path accuracy.

Item Type: Conference proceeding
Professor:
Professor
Saad, Maarouf
St-Onge, David
Affiliation: Génie électrique, Génie mécanique
Date Deposited: 11 Jun 2024 18:35
Last Modified: 29 Aug 2024 04:00
URI: https://espace2.etsmtl.ca/id/eprint/28775

Actions (login required)

View Item View Item