ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Zhao, Xigang, Liu, Peng, Mahmoudi, Saïd, Garg, Sahil, Kaddoum, Georges et Hassan, Mohammad Mehedi. 2024. « DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection ». Alexandria Engineering Journal, vol. 108. pp. 436-444.

[thumbnail of Kaddoum-G-2024-29368.pdf]
Prévisualisation
PDF
Kaddoum-G-2024-29368.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (1MB) | Prévisualisation

Résumé

In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vast quantities of multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet challenging problem in time series research, necessitating machine learning models capable of identifying rare anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning representations of primary patterns within sequences and detecting deviations through reconstruction errors. However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies and improving detection accuracy. Experimental validation conducted on two large-scale public datasets demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its superior performance.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Kaddoum, Georges
Affiliation: Génie électrique
Date de dépôt: 04 sept. 2024 19:48
Dernière modification: 12 sept. 2024 18:32
URI: https://espace2.etsmtl.ca/id/eprint/29368

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt