ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Advanced industrial fault detection: A comparative analysis of ultrasonic signal processing and ensemble machine learning techniques

Moshrefi, Amirhossein et Nabki, Frederic. 2024. « Advanced industrial fault detection: A comparative analysis of ultrasonic signal processing and ensemble machine learning techniques ». Applied Sciences, vol. 14, nº 15.

[thumbnail of Nabki-F-2024-29370.pdf]
Prévisualisation
PDF
Nabki-F-2024-29370.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (18MB) | Prévisualisation

Résumé

Modern condition monitoring and industrial fault prediction have advanced to include intelligent techniques, aiming to improve reliability, productivity, and safety. The integration of ultrasonic signal processing with various machine learning (ML) models can significantly enhance the efficiency of industrial fault diagnosis. In this paper, ultrasonic data are analyzed and applied to ensemble ML algorithms. Four methods for reducing dimensionality are employed to illustrate differences among acoustic faults. Different features in the time domain are extracted, and predictive ensemble models including a gradient boosting classifier (GB), stacking classifier (Stacking), voting classifier (Voting), Adaboost, Logit boost (Logit), and bagging classifier (Bagging) are implemented. To assess the model’s performance on new data during experiments, k-fold cross-validation (CV) was employed. Based on the designed workflow, GB demonstrated the highest performance, with less variation over 5 cross-folds. Finally, the real-time capability of the model was evaluated by deployment on an ARM Cortex-M4F microcontroller (MCU).

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Nabki, Frédéric
Affiliation: Génie électrique
Date de dépôt: 04 sept. 2024 19:49
Dernière modification: 12 sept. 2024 18:46
URI: https://espace2.etsmtl.ca/id/eprint/29370

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt