ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Review of artificial intelligence methods for faults monitoring, diagnosis, and prognosis in hydroelectric synchronous generators

Bechara, Helene, Ibrahim, Rony, Zemouri, Ryad, Kedjar, Bachir, Merkhouf, Arezki, Tahan, Antoine et Al-Haddad, Kamal. 2024. « Review of artificial intelligence methods for faults monitoring, diagnosis, and prognosis in hydroelectric synchronous generators ». IEEE Access, vol. 12. pp. 173599-173617.

[thumbnail of Tahan-A-2024-30330.pdf]
Prévisualisation
PDF
Tahan-A-2024-30330.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (3MB) | Prévisualisation

Résumé

This scientific article aims to provide a comprehensive review of fault monitoring, diagnosis, and prognosis methods based on Artificial Intelligence (AI) for Hydroelectric Generator Units (HGUs). It presents a compilation of research studies that have utilized AI models for fault monitoring, diagnosis, and prognosis in HGUs. Additionally, it outlines the process for building an AI model in the context of fault management in HGUs and discusses the advantages and disadvantages associated with AI methods in this domain. Furthermore, the article examines the research prospects and trends of AI models for fault management in HGUs. By synthesizing existing literature and highlighting future directions, this article serves as a valuable resource for researchers and practitioners seeking to leverage AI techniques for effective fault management in HGUs.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Tahan, Antoine
Al Haddad, Kamal
Affiliation: Génie mécanique, Génie électrique
Date de dépôt: 03 janv. 2025 21:24
Dernière modification: 27 janv. 2025 19:41
URI: https://espace2.etsmtl.ca/id/eprint/30330

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt