ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Tuning parameters of genetic algorithms for wind farm optimization using the design of experiments method

El Mestari, Wahiba, Cheggaga, Nawal, Adli, Feriel, Benallal, Abdellah et Ilinca, Adrian. 2025. « Tuning parameters of genetic algorithms for wind farm optimization using the design of experiments method ». Sustainability, vol. 17, nº 7.
Compte des citations dans Scopus : 2.

[thumbnail of Ilinca-A-2025-30859.pdf]
Prévisualisation
PDF
Ilinca-A-2025-30859.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (3MB) | Prévisualisation

Résumé

Wind energy is a vital renewable resource with substantial economic and environmental benefits, yet its spatial variability poses significant optimization challenges. This study advances wind farm layout optimization by employing a systematic genetic algorithm (GA) tuning approach using the design of experiments (DOE) method. Specifically, a full factorial 22 DOE was utilized to optimize crossover and mutation coefficients, enhancing convergence speed and overall algorithm performance. The methodology was applied to a hypothetical wind farm with unidirectional wind flow and spatial constraints, using a fitness function that incorporates wake effects and maximizes energy production. The results demonstrated a 4.50% increase in power generation and a 4.87% improvement in fitness value compared to prior studies. Additionally, the optimized GA parameters enabled the placement of additional turbines, enhancing site utilization while maintaining cost-effectiveness. ANOVA and response surface analysis confirmed the significant interaction effects between GA parameters, highlighting the importance of systematic tuning over conventional trial-and-error approaches. This study establishes a foundation for real-world applications, including smart grid integration and adaptive renewable energy systems, by providing a robust, data-driven framework for wind farm optimization. The findings reinforce the crucial role of systematic parameter tuning in improving wind farm efficiency, energy output, and economic feasibility.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Ilinca, Adrian
Affiliation: Génie mécanique
Date de dépôt: 30 avr. 2025 16:11
Dernière modification: 02 mai 2025 18:54
URI: https://espace2.etsmtl.ca/id/eprint/30859

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt