Ramezani, Ghazaleh, Silva, Ixchel Ocampo, Stiharu, Ion, Ven, Theo G. M. van de et Nerguizian, Vahe.
2025.
« Lasso model-based optimization of CNC/CNF/rGO nanocomposites ».
Micromachines, vol. 16, nº 4.
Compte des citations dans Scopus : 1.
Prévisualisation |
PDF
Nerguizian-V-2025-30890.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (6MB) | Prévisualisation |
Résumé
This study explores the use of citric acid and L-ascorbic acid as reducing agents in CNC/CNF/rGO nanocomposite fabrication, focusing on their effects on electrical conductivity and mechanical properties. Through comprehensive analysis, L-ascorbic acid showed superior reduction efficiency, producing rGO with enhanced electrical conductivity up to 2.5 S/m, while citric acid offered better CNC and CNF dispersion, leading to higher mechanical stability. The research employs an advanced optimization framework, integrating regression models and a neural network with 30 hidden layers, to provide insights into composition–property relationships and enable precise material tailoring. The neural network model, trained on various input variables, demonstrated excellent predictive performance, with R2 values exceeding 0.998. A LASSO model was also implemented to analyze variable impacts on material properties. The findings, supported by machine learning optimization, have significant implications for flexible electronics, smart packaging, and biomedical applications, paving the way for future research on scalability, long-term stability, and advanced modeling techniques for these sustainable, multifunctional materials.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Nerguizian, Vahé |
Affiliation: | Génie électrique |
Date de dépôt: | 08 mai 2025 15:06 |
Dernière modification: | 12 mai 2025 18:21 |
URI: | https://espace2.etsmtl.ca/id/eprint/30890 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |