ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications

Dou, Hongwen et Zhang, Kun. 2025. « Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications ». Journal of Building Engineering, vol. 111.

[thumbnail of Zhang-K-2025-31197.pdf]
Prévisualisation
PDF
Zhang-K-2025-31197.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC.

Télécharger (7MB) | Prévisualisation

Résumé

When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-h horizon with 15-min intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Zhang, Kun
Affiliation: Génie mécanique
Date de dépôt: 30 juill. 2025 13:36
Dernière modification: 25 août 2025 12:42
URI: https://espace2.etsmtl.ca/id/eprint/31197

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt