ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Policy-space diffusion for physics-based character animation

Rocca, Michele, Darkner, Sune, Erleben, Kenny et Andrews, Sheldon. 2025. « Policy-space diffusion for physics-based character animation ». ACM Transactions on Graphics, vol. 44, nº 3.
Compte des citations dans Scopus : 1.

[thumbnail of Andrews-S-2025-31227.pdf]
Prévisualisation
PDF
Andrews-S-2025-31227.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (146MB) | Prévisualisation

Résumé

Adapting motion to new contexts in digital entertainment often demands fast agile prototyping. State-of-the-art techniques use reinforcement learning policies for simulating the underlined motion in a physics engine. Unfortunately, policies typically fail on unseen tasks and it is too time-consuming to fine-tune the policy for every new morphological, environmental, or motion change. We propose a novel point of view on using policy networks as a representation of motion for physics-based character animation. Our policies are compact, tailored to individual motion tasks, and preserve similarity with nearby tasks. This allows us to view the space of all motions as a manifold of policies where sampling substitutes training. We obtain memory-efficient encoding of motion that leverages the characteristics of control policies such as being generative, and robust to small environmental changes. With this perspective, we can sample novel motions by directly manipulating weights and biases through a Diffusion Model. Our newly generated policies can adapt to previously unseen characters, potentially saving time in rapid prototyping scenarios. Our contributions include the introduction of Common Neighbor Policy regularization to constrain policy similarity during motion imitation training making them suitable for generative modeling; a Diffusion Model adaptation for diverse morphology; and an open policy dataset. The results show that we can learn non-linear transformations in the policy space from labeled examples, and conditionally generate new ones. In a matter of seconds, we sample a batch of policies for different conditions that show comparable motion fidelity metrics as their respective trained ones.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Andrews, Sheldon
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 30 juill. 2025 13:31
Dernière modification: 12 août 2025 20:32
URI: https://espace2.etsmtl.ca/id/eprint/31227

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt