ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Measurement of the functional size of web analytics implementation: A COSMIC-based case study using machine learning

Abdallah, Ammar, Abran, Alain, Qasaimeh, Munthir, Qasaimeh, Malik et Abdallah, Bashar. 2025. « Measurement of the functional size of web analytics implementation: A COSMIC-based case study using machine learning ». Future Internet, vol. 17, nº 7.

[thumbnail of Abran-A-2025-31472.pdf]
Prévisualisation
PDF
Abran-A-2025-31472.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

To fully leverage Google Analytics and derive actionable insights, web analytics practitioners must go beyond standard implementation and customize the setup for specific functional requirements, which involves additional web development efforts. Previous studies have not provided solutions for estimating web analytics development efforts, and practitioners must rely on ad hoc practices for time and budget estimation. This study presents a COSMIC-based measurement framework to measure the functional size of Google Analytics implementations, including two examples. Next, a set of 50 web analytics projects were sized in COSMIC Function Points and used as inputs to various machine learning (ML) effort estimation models. A comparison of predicted effort values with actual values indicated that Linear Regression, Extra Trees, and Random Forest ML models performed well in terms of low Root Mean Square Error (RMSE), high Testing Accuracy, and strong Standard Accuracy (SA) scores. These results demonstrate the feasibility of applying functional size for web analytics and its usefulness in predicting web analytics project efforts. This study contributes to enhancing rigor in web analytics project management, thereby enabling more effective resource planning and allocation.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Abran, Alain
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 21 août 2025 14:22
Dernière modification: 24 sept. 2025 21:57
URI: https://espace2.etsmtl.ca/id/eprint/31472

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt