ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder

Chaudhry, Shubham, Abdedou, Azzedine et Soulaïmani, Azzeddine. 2025. « Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder ». Advanced Modeling and Simulation in Engineering Sciences, vol. 12, nº 1.

[thumbnail of Soulaimani-A-2025-31623.pdf]
Prévisualisation
PDF
Soulaimani-A-2025-31623.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (4MB) | Prévisualisation

Résumé

This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Soulaïmani, Azzeddine
Affiliation: Génie mécanique
Date de dépôt: 04 sept. 2025 12:58
Dernière modification: 24 sept. 2025 23:08
URI: https://espace2.etsmtl.ca/id/eprint/31623

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt