ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Exploring challenges and solutions in hydrogel failure and fracture mechanics for advancing vascular tissue engineering

Drai, Jeffrey et Czekanski, Aleksander. 2025. « Exploring challenges and solutions in hydrogel failure and fracture mechanics for advancing vascular tissue engineering ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 177 - Exploring challenges and solutions.pdf]
Prévisualisation
PDF
177 - Exploring challenges and solutions.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (460kB) | Prévisualisation

Résumé

Vascular tissue engineering requires the creation of new materials that mimic the biomechanical and biofunctional properties of native tissues. Reinforced natural hydrogels are good candidates due to their biocompatibility, tunable mechanical properties, and support of cellular activities. Their application in vascular constructs is, nevertheless, hindered by inadequate information on their fracture and failure mechanisms under physiological conditions. This review introduces a comprehensive assessment of hydrogel fracture mechanics involving mechanical properties, toughness, and factors affecting failure, like crosslinking density, porosity, and swelling stress. It provides a comparison among various theoretical tools, including linear and nonlinear fracture mechanics, theories of poroelasticity, and finite element analysis, as predictive tools for hydrogel. In addition to this, the review highlights how multiscale modeling plays a major role in transitioning from molecular-level interactions to macroscopic properties. Through the integration of theoretical models and empirical findings, this study reveals the shortcomings of existing methodologies and suggests directions for future research. The final objective of developing a better understanding of fracture and failure mechanisms is to enable the development of strong hydrogel-based materials for vascular tissue engineering.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:09
Dernière modification: 18 déc. 2025 15:09
URI: https://espace2.etsmtl.ca/id/eprint/32388

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt