ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Parallelized and adaptively refined phase-field monolithic scheme for brittle crack simulation

Li, Zhao, Chen, Kuiying et Jin, Tao. 2025. « Parallelized and adaptively refined phase-field monolithic scheme for brittle crack simulation ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 45 - Parallelized and adaptively refined.pdf]
Prévisualisation
PDF
45 - Parallelized and adaptively refined.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (5MB) | Prévisualisation

Résumé

The phase-field method has become a widely adopted technique in fracture propagation simulations because it can naturally handle complex crack path. However, it is computationally expensive, which hinders its application in three-dimensional (3D) problems. To overcome this challenge, we adopt the parallel computing paradigm based on the Message Passing Interface (MPI) and the adaptive mesh refinement technique. Specifically, we employ the MPI to parallelize the phase-field monolithic scheme based on the limited-memory BFGS (L-BFGS) method, which reduces the memory requirement by storing a series of vectors instead of a fully dense matrix. Additionally, the MPI enables efficient communications between processors across multiple computing nodes in a distributed system, making it ideal for large-scale simulations. A fully distributed mesh is selected so that only a non-overlapping grid is stored on each processor, which accelerates the computational process by solving multiple smaller tasks simultaneously. Furthermore, the adaptive refinement technique is also applied such that only elements near the cracked region are refined, which could reduce the size of the discretized problem. We present both 2D and 3D crack propagation problems to evaluate the effectiveness of the parallelization and adaptive mesh refinement technique in reducing the computational cost. We also perform comprehensive scaling analyses using the high-performance computing (HPC) resources provided by the Digital Research Alliance of Canada.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:16
Dernière modification: 18 déc. 2025 15:16
URI: https://espace2.etsmtl.ca/id/eprint/32444

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt