ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Obstacle avoidance and trajectory tracking coordinated control of multi-axle all-wheel steering vehicles based on the Ackerman principle

Yuan, Jiajun, Zhou, Qinghui, Xie, Yidong et Wang, Yanxue. 2025. « Obstacle avoidance and trajectory tracking coordinated control of multi-axle all-wheel steering vehicles based on the Ackerman principle ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 122 - Obstacle avoidance and trajectory .pdf]
Prévisualisation
PDF
122 - Obstacle avoidance and trajectory .pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (662kB) | Prévisualisation

Résumé

Multi-axle vehicles with autonomous driving capabilities often face challenges in achieving high trajectory tracking accuracy, particularly in complex road scenarios, and the steering angles of individual wheels may deviate from the Ackerman principle. This paper investigates multi-axle all-wheel steering vehicles based on the Ackerman principle. By utilizing the kinematic model of the vehicle, the functional relationships between the steering center position, the steering angles of individual wheels, and the specific motion trajectories of each wheel under low-speed conditions for a given trajectory are derived. Additionally, the relationships between the steering angles of each axle and the turning radius under varying numbers of axles with a fixed total wheelbase are analyzed. Furthermore, a critical issue arises in high-speed steering scenarios where obstacle avoidance and trajectory tracking must be coordinated when obstacles are present ahead. To address this issue, this study establishes a three-degree-of-freedom dynamic model comprising lateral, longitudinal, and yaw motions. A nonlinear MPC (Model Predictive Control) controller incorporating obstacle avoidance functionality and an objective function is proposed for local re-planning of the global path when obstacles are detected. The parameters from the re-planned trajectory are then fed into a linear MPC controller to control the front-wheel steering angles, thereby achieving a coordinated control strategy for obstacle avoidance and trajectory tracking.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:34
Dernière modification: 18 déc. 2025 15:34
URI: https://espace2.etsmtl.ca/id/eprint/32529

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt