ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Automating clash relevance filtering in BIM-based multidisciplinary coordination using machine learning

Ailem, Rayane et Boton, Conrad. 2026. « Automating clash relevance filtering in BIM-based multidisciplinary coordination using machine learning ». Automation in Construction, vol. 181, nº Part A.

[thumbnail of Boton-C-2026-32954.pdf]
Prévisualisation
PDF
Boton-C-2026-32954.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (10MB) | Prévisualisation

Résumé

In a context where Machine Learning (ML) is reshaping the construction industry and where normative frameworks such as ISO 19650 govern BIM data management, this paper aims to automate the filtering of true and false clashes in 3D models coordination process, using machine learning (ML). A metadata extraction plug-in is developed to gather the necessary data for training ML models. Tests are conducted on BIM models to evaluate the plug-in’s ability to identify and classify clashes, followed by a reimplementation of the solution within an existing BIM software environment. Validation, carried out through both technical testing and feedback from industry professionals, demonstrates the plug-in’s functionality and its ability to replicate the decision-making process of a BIM coordinator in clash filtering. Intended for construction professionals this paper highlights the potential of AI to enhance BIM quality control while complying with regulatory standards and meeting the practical needs of the industry.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Boton, Conrad
Affiliation: Génie de la construction
Date de dépôt: 07 nov. 2025 17:14
Dernière modification: 10 nov. 2025 18:56
URI: https://espace2.etsmtl.ca/id/eprint/32954

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt