ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Solving one-body ensemble N-representability problems with spin

Liebert, Julia, Castillo, Federico, Labbé, Jean-Philippe, Maciazek, Tomasz et Schilling, Christian. 2025. « Solving one-body ensemble N-representability problems with spin ». Quantum, vol. 9.

[thumbnail of Labbe-JP-2025-33160.pdf]
Prévisualisation
PDF
Labbe-JP-2025-33160.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

The Pauli exclusion principle is fundamental to understanding electronic quantum systems. It namely constrains the expected occupancies ni of orbitals φi according to 0≤ni≤2. In this work, we first refine the underlying one-body N-representability problem by taking into account simultaneously spin symmetries and a potential degree of mixedness w of the N-electron quantum state. We then derive a comprehensive solution to this problem by using basic tools from representation theory, convex analysis and discrete geometry. Specifically, we show that the set of admissible orbital one-body reduced density matrices is fully characterized by linear spectral constraints on the natural orbital occupation numbers, defining a convex polytope ΣN,S(w)⊂[0,2]d. These constraints are independent of M and the number d of orbitals, while their dependence on N,S is linear, and we can thus calculate them for arbitrary system sizes and spin quantum numbers. Our results provide a crucial missing cornerstone for ensemble density (matrix) functional theory.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Labbé, Jean-Philippe
Affiliation: Département des enseignements généraux
Date de dépôt: 23 déc. 2025 17:12
Dernière modification: 10 janv. 2026 18:57
URI: https://espace2.etsmtl.ca/id/eprint/33160

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt